Ensemble Empirical Mode Decomposition Analysis of EEG Data Collected during a Contour Integration Task
نویسندگان
چکیده
منابع مشابه
Ensemble Empirical Mode Decomposition Analysis of EEG Data Collected during a Contour Integration Task
We discuss a data-driven analysis of EEG data recorded during a combined EEG/fMRI study of visual processing during a contour integration task. The analysis is based on an ensemble empirical mode decomposition (EEMD) and discusses characteristic features of event related modes (ERMs) resulting from the decomposition. We identify clear differences in certain ERMs in response to contour vs noncon...
متن کاملBidimensional ensemble empirical mode decomposition of functional biomedical images taken during a contour integration task
In cognitive neuroscience, extracting characteristic textures and features from functional imaging modalities which could be useful in identifying particular cognitive states across different conditions is still an important field of study. This paper explores the potential of two-dimensional ensemble empirical mode decomposition (2DEEMD) to extract such textures, so-called bidimensional intrin...
متن کاملCombined EMD-sLORETA Analysis of EEG Data Collected during a Contour Integration Task
Lately, Ensemble Empirical Mode Decomposition (EEMD) techniques receive growing interest in biomedical data analysis. Event-Related Modes (ERMs) represent features extracted by an EEMD from electroencephalographic (EEG) recordings. We present a new approach for source localization of EEG data based on combining ERMs with inverse models. As the first step, 64 channel EEG recordings are pooled ac...
متن کاملEnsemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method
A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the p...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2015
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0119489